

Faculty	Agriculture, Engineering and Natural Sciences
School	Science
Department	Computing, Mathematical and Statistical Science
Subject	Calculus I
Subject Code	MAT 3611
Date	June 2022
Duration	Three Hours
Marks	100

SUPPLEMENTARY EXAMINATION PAPER

Examiner: Mr. P. Haihambo, UNAM

Moderator: Prof. J-B. Gatsinzi, BIUST

INSTRUCTIONS:

- (i) This question paper consists of FOUR pages (including this front page).
- (ii) Answer ALL questions in section A and ANY 3 out of 4 questions in section B.
- (iii) Only non-programmable calculators may be used.
- (iv) Try to understand each question before you answer it.
- (v) Number the questions clearly and present your solutions in a logical manner.
- (vi) Use proper mathematical terminology.
- (vii) The full marks for this paper is 100.

UNIVERSITY OF NAMIBIA EXAMINATIONS

Section A.[40 marks]

Answer ALL questions in this section.

Question A1.[14 marks]

A1.1 Give a precise definition of the following concepts.

a)
$$c \in \mathbb{R}$$
 is an accumulation point of a subset A of \mathbb{R} . [2]

b)
$$\lim_{x \to -\infty} f(x) = L$$
, where $L \in \mathbb{R}$.

c) A point
$$(c, f(c))$$
 is a point of inflection for the graph of f . [4]

d) A function
$$f$$
 is continuous from the left at $c \in D_f$.

Question A2.[16 marks]

Verify the following limits by applying the definition.

a)
$$\lim_{x \to 3} \left(\frac{x^3 - 1}{x^2 + 1} \right) = \frac{13}{5}$$
, for $\varepsilon = 0.01$. [10]

b)
$$\lim_{x \to 4^+} \left(\frac{2030}{\sqrt{x^2 - 16}} \right) = +\infty.$$
 [6]

Question A3.[10 marks]

- a) A wire of 100 cm is cut in two pieces to make a square and a circle. Find the length of each piece of wire so that the sum of the area enclosed by the square and the circle is minimum.
- b) Suppose f is a function that satisfies the equation

$$f(x + h) = f(x) + f(h) + x^2h + xh^2$$

for all $x, h \in \mathbb{R}$. Suppose also that

$$\lim_{x \to 0} \frac{f(x)}{x} = 10.$$

(i) Find
$$f(0)$$
.

(ii) Find
$$f'(0)$$
. [1]

(iii) Find the derivative function f'(x) and give its domain. [3]

Section B. [60 marks]

Answer ANY 3 OUT OF 4 questions in this section.

Question B1. [20 marks]

a) Without using derivatives, valuate the following limit.

(i)
$$\lim_{x \to 1} \left(\frac{|2x - 3| - |2x - 1|}{x - 1} \right)$$
. [6]

(ii)
$$\lim_{x \to 5^-} \frac{\sqrt{x-1}-2}{\sqrt[3]{2x-2}-2}$$
. [6]

b) Let $a, b \in \mathbb{R}$. Consider the function

$$f(x) = \begin{cases} \frac{\sqrt{a(x-2)+b-4}}{x-2} & \text{if } x < 2, \\ 2x-1 & \text{if } x \ge 2. \end{cases}$$

[5]

Find the values of a and b, so that f is continuous at a.

c) Use the Intermediate Value Theorem to show that the equation $e^x = 4 - x^3$ has at least one solution. [3]

Question B2. [20 marks]

Consider the function

$$f(x) = \frac{\ln x}{x^3}$$

- a) Find the domain of f. [1]
- b) Find the x, y-intercepts. [2]
- c) Find $\lim_{x\to 0^+} f(x)$. Identify any possible asymptote. [3]
- d) Find $\lim_{x \to +\infty} f(x)$. Identify any possible asymptote. [3]
- e) Find f'(x) and f''(x). [4]
- f) Find the critical number(s) of f. [1]
- g) Find the intervals of increase and decrease. [2]
- h) Discuss the concavity of f and give any possible point(s) of inflection. [2]
- i) Sketch a well labelled graph of f. [2]

Question B3. [20 marks]

- a) Use implicit differentiation to find y', where $2^{-x}y^2 x + \log_2(yx^3) = \tan^{-1}(\ln x)$. [3]
- b) Evaluate the following integral.

(i)
$$\int_2^3 \frac{e^x}{e^{2x} - 1} dx$$
. [8]

(ii)
$$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$$
. [4]

c) Scientists can determine the age of ancient objects by radiocarbon dating. The half-life of radioactive carbon 14C is 5730 years. A discovery of a parchment revealed that it had 74% as much 14C radioactivity as plant material does today. What is the age of the parchment?
[5]

Question B4. [20 marks]

a) If a and b are distinct positive real numbers, find the maximum value of [8]

$$f(x) = (x-1)^b (2-x)^{2a}$$
, where $1 \le x \le 2$.

b) Determine the number(s) $a \in \mathbb{R}$ for which the function f has no critical number: [8]

$$f(x) = (a-6)\cos(2x) + (a-2)x + \sin(2022)$$

c) If f is twice differentiable at c, where c > 0, evaluate the following limit in terms of f''(c):

$$\lim_{x \to c} \left(\frac{f'(x) - f'(c)}{\sqrt{x} - \sqrt{c}} \right)$$

[4]

END